Many scholars have studied how learning happens (Nilson, 2016; Brookfield, 2013). It has been proven that students learn both inside and outside of the classroom (Nilson, 2016).

In recent years, geodesign, defined by Steinitz (2012) as “requires collaboration among the design professionals, geographical sciences, information technologies, and the people of the place”, has emerged as a new approach to facilitating life in geographic spaces through multidisciplinary collaboration. As more and more institutions of higher education have launched geodesign programs, the question of how much and how effectively students can learn from these programs has started to receive attention. Academic geodesign experience is an excellent way for students to develop interest in related fields; it provides a foundation for understanding the geodesign process. As is true with other subjects, learning happens both inside and outside of a geodesign classroom. Unlike in other classes, the nature of geodesign requires collaboration among people with different backgrounds, which adds another
dimension to the learning experience. This paper discusses how learning happens in Steinitz’s models and reviews case studies to support the findings.

Given Flaxman’s definition of geodesign, technology should play an important part in assisting geodesign-related decision making. This paper also examines the role of technology in the geodesign learning process. Different geodesign platforms are compared in terms of suitable study area size, data processing capability, data types, and learning curves. This paper also examines cases in which game engines are applied to the geodesign process, especially when combined with virtual reality and augmented reality.

Reference:


• Author(s) Biography (200 words each):

Leilei Duan, Ph.D., is a post-doctoral teaching fellow with the Spatial Sciences institute at the University of Southern California Dornsife College of Letters, Arts and Sciences. Duan received her doctoral degree in Design, Construction and Planning from University of Florida. Her research and teaching interests are in and use planning and resource allocation; computer-aided urban design; pedagogy, methodology, and practice in Geodesign; urban data analysis: statistics, spatial analysis, visualization; application of geographic information system in urban planning; three-dimensional modeling system; quality of life and built environment; urban form and network analysis; and environmental planning. In particular, she has explored the Geodesign workflow in the population and employment allocation process and the impact of land use patterns on changes on traffic crashes. She is also the co-founder and administrator for GeodesignWiki.

John P. Wilson, Ph.D., is Professor of Spatial Sciences and Sociology in the Dana and David Dornsife College of Letters, Arts and Sciences at the University of Southern California (USC) where he is founding director of the Spatial Sciences Institute. He also holds adjunct appointments as Professor in the School of Architecture, the Keck School of Medicine of USC’s Department of Medicine, and the Viterbi School of Engineering’s Departments of Computer Science and Civil & Environmental Engineering. His research focuses on the modeling of environmental systems and makes extensive use of GIS software tools, fieldwork, spatial analysis techniques, and computer models. He has published numerous books and articles on these topics, including two edited volumes,
Terrain Analysis: Principles and Applications (John Wiley and Sons, 2000) and the Handbook of Geographic Information Science (Blackwell Publishers, 2007), and Environmental Applications of Digital Terrain Modeling (John Wiley and Sons, 2018). Much of this work is collaborative and cross-disciplinary with the goal of improving knowledge and understanding of the factors linking society, the environment and human health.